Clamped Kirchoff-Love plate under uniform load
This demo program solves the out-of-plane Kirchoff-Love equations on the unit square with uniform transverse loading and fully clamped boundary conditions.
It is assumed the reader understands most of the basic functionality of the new FEniCSx Project.
This demo illustrates how to:
Define the Kirchhoff-Love plate equations using UFL using the mixed finite element formulation of Hellan-Herrmann-Johnson.
A modern presentation of this approach can be found in the paper
Arnold, D. N., Walker S. W., The Hellan–Herrmann–Johnson Method with Curved Elements, SIAM Journal on Numerical Analysis 58:5, 2829-2855 (2020), doi:10.1137/19M1288723.
We remark that this model can be recovered formally from the Reissner-Mindlin models by taking the limit in the thickness \(t \to 0\) and setting \(\theta = \grad w\).
We begin by importing the necessary functionality from DOLFINx, UFL and PETSc.
from mpi4py import MPI
import numpy as np
import dolfinx
import ufl
from basix.ufl import element, mixed_element
from dolfinx.fem import dirichletbc, functionspace
from dolfinx.fem.petsc import LinearProblem
from dolfinx.mesh import CellType, create_unit_square
from ufl import FacetNormal, Identity, Measure, grad, inner, sym, tr
We then create a two-dimensional mesh of the mid-plane of the plate \(\Omega = [0, 1] \times [0, 1]\).
mesh = create_unit_square(MPI.COMM_WORLD, 16, 16, CellType.triangle)
The Hellen-Herrmann-Johnson element for the Kirchhoff-Love plate problem consists of:
\(k + 1\)-th order scalar-valued Lagrange element for the transverse displacement field \(w \in \mathrm{CG}_{k + 1}\) and,
\(k\)-th order Hellan-Herrmann-Johnson finite elements for the bending moments, which naturally discretise tensor-valued functions in \(H(\mathrm{div}\;\mathrm{\bf{div}})\), \(M \in \mathrm{HHJ}_k\).
The final element definition is
k = 2
U_el = mixed_element(
[element("Lagrange", mesh.basix_cell(), k + 1), element("HHJ", mesh.basix_cell(), k)]
)
U = functionspace(mesh, U_el)
w, M = ufl.TrialFunctions(U)
w_t, M_t = ufl.TestFunctions(U)
We assume constant material parameters; Young’s modulus \(E\), Poisson’s ratio \(\nu\), shear-correction factor \(\kappa\), and thickness \(t\).
E = 10920.0
nu = 0.3
t = 0.001
The weak form for the problem can be written as:
Find \((w, M) \in \mathrm{CG}_{k + 1} \times \mathrm{HHJ}_k\) such that
where \(\left( \cdot, \cdot \right)\) is the usual \(L^2\) inner product on the mesh \(\Omega\). The rotations \(\theta\) for the Kirchhoff-Love model can be written in terms of the transverse displacements
The bending strain tensor \(k\) for the Kirchoff-Love model can be expressed in terms of the rotations
The bending strain tensor \(k\) can also be written in terms of the bending moments \(M\)
with \(\mathrm{tr}\) the trace operator and \(I\) the identity tensor.
The inner product \(\left< \cdot, \cdot \right>\) is defined by
where \(M_{nn} = \left(Mn \right) \cdot n\) is the normal-normal component of the bending moment, \(\partial K\) are the facets of the mesh, \([[ \theta ]]\) is the jump in the normal component of the rotations on the facets (reducing to simply \(\theta \cdot n\) on the exterior facets).
The above equations can be written relatively straightforwardly in UFL as:
dx = Measure("dx", mesh)
dS = Measure("dS", mesh)
ds = Measure("ds", mesh)
def theta(w):
"""Rotations in terms of transverse displacements"""
return grad(w)
def k_theta(theta):
"""Bending strain tensor in terms of rotations"""
return sym(grad(theta))
def k_M(M):
"""Bending strain tensor in terms of bending moments"""
return (12.0 / (E * t**3)) * ((1.0 + nu) * M - nu * Identity(2) * tr(M))
def nn(M):
"""Normal-normal component of tensor"""
n = FacetNormal(M.ufl_domain())
M_n = ufl.dot(M, n)
M_nn = ufl.dot(M_n, n)
return M_nn
def inner_divdiv(M, theta):
"""Discrete div-div inner product"""
n = FacetNormal(M.ufl_domain())
M_nn = nn(M)
result = (
-inner(M, k_theta(theta)) * dx
+ inner(M_nn("+"), ufl.jump(theta, n)) * dS
+ inner(M_nn, ufl.dot(theta, n)) * ds
)
return result
a = inner(k_M(M), M_t) * dx + inner_divdiv(M_t, theta(w)) + inner_divdiv(M, theta(w_t))
L = -inner(t**3, w_t) * dx
def all_boundary(x):
return np.full(x.shape[1], True, dtype=bool)
We apply clamped boundary conditions on the entire boundary. The essential boundary condition \(w = 0\) is enforced directly in the finite element space, while the condition \(\nabla w \cdot n = 0\) is a natural condition that is satisfied when the corresponding essential condition on \(m_{nn}\) is dropped.
TODO: Add table like TDNNS example.
boundary_entities = dolfinx.mesh.locate_entities_boundary(mesh, mesh.topology.dim - 1, all_boundary)
bcs = []
# Transverse displacement
boundary_dofs_displacement = dolfinx.fem.locate_dofs_topological(
U.sub(0), mesh.topology.dim - 1, boundary_entities
)
bcs.append(dirichletbc(np.array(0.0, dtype=np.float64), boundary_dofs_displacement, U.sub(0)))
Finally we solve the problem and output the transverse displacement at the centre of the plate.
problem = LinearProblem(
a,
L,
bcs=bcs,
petsc_options={"ksp_type": "preonly", "pc_type": "lu", "pc_factor_mat_solver_type": "mumps"},
)
u_h = problem.solve()
bb_tree = dolfinx.geometry.bb_tree(mesh, 2)
point = np.array([[0.5, 0.5, 0.0]], dtype=np.float64)
cell_candidates = dolfinx.geometry.compute_collisions_points(bb_tree, point)
cells = dolfinx.geometry.compute_colliding_cells(mesh, cell_candidates, point)
w, M = u_h.split()
if cells.array.shape[0] > 0:
value = w.eval(point, cells.array[0])
print(value[0])