Clamped Reissner-Mindlin plate under uniform load using TDNNS element

This demo program solves the out-of-plane Reissner-Mindlin equations on the unit square with uniform transverse loading and fully clamped boundary conditions using the TDNNS (tangential displacement normal-normal stress) element developed in:

Pechstein, A. S., Schöberl, J. The TDNNS method for Reissner-Mindlin plates. Numer. Math. 137, 713-740 (2017). doi:10.1007/s00211-017-0883-9

The idea behind this element construction is that the rotations, transverse displacement and bending moments are discretised separately. The finite element space for the transverse displacement is chosen such that the gradient is a subset of the rotation space and therefore the Kirchhoff constraint as the thickness parameter tends to zero is exactly satisfied by construction.

Mathematically the forms in this work follow exactly that shown in Pechstein and Schöberl except for a few minor notational changes to match the rest of FEniCSx-Shells.

It is assumed the reader understands most of the basic functionality of the new FEniCSx Project.

We begin by importing the necessary functionality from DOLFINx, UFL and PETSc.

from mpi4py import MPI

import numpy as np

import dolfinx
import ufl
from basix.ufl import element, mixed_element
from dolfinx.fem import Function, dirichletbc, functionspace
from dolfinx.fem.petsc import LinearProblem
from dolfinx.mesh import CellType, create_unit_square
from ufl import FacetNormal, Identity, Measure, grad, inner, split, sym, tr

We then create a two-dimensional mesh of the mid-plane of the plate \(\Omega = [0, 1] \times [0, 1]\).

mesh = create_unit_square(MPI.COMM_WORLD, 16, 16, CellType.triangle)

The Pechstein-Schöberl element of order \(k\) for the Reissner-Mindlin plate problem consists of:

  • \(k\)-th order vector-valued Nédélec elements of the second kind for the rotations \(\theta \in \mathrm{NED}_k\) and,

  • \(k + 1\)-th order scalar-valued Lagrange element for the transverse displacement field \(w \in \mathrm{CG}_{k + 1}\) and,

  • \(k\)-th order Hellan-Herrmann-Johnson finite elements for the bending moments, which naturally discretise tensor-valued functions in \(H(\mathrm{div}\;\mathrm{\bf{div}})\), \(M \in \mathrm{HHJ}_k\).

The final element definition with \(k = 3\) is:

k = 3
cell = mesh.basix_cell()
U_el = mixed_element(
    [element("N2curl", cell, k), element("Lagrange", cell, k + 1), element("HHJ", cell, k)]
)
U = functionspace(mesh, U_el)

u = ufl.TrialFunction(U)
u_t = ufl.TestFunction(U)

theta, w, M = split(u)
theta_t, w_t, M_t = split(u_t)

We assume constant material parameters; Young’s modulus \(E\), Poisson’s ratio \(\nu\), shear-correction factor \(\kappa\), and thickness \(t\).

E = 10920.0
nu = 0.3
kappa = 5.0 / 6.0
t = 0.001

The overall weak form for the problem can be written as:

Find \((\theta, w, M) \in \mathrm{NED}_k \times \mathrm{CG}_1 \times \mathrm{HHJ}_k\) such that

\[\begin{split} \left( k(M), \tilde{M} \right) + \left< \tilde{M}, \theta \right> + \left< M, \tilde{\theta} \right> - \left( \mu \gamma(\theta, w), \gamma(\tilde{\theta}, \tilde{w}) \right) \\ = -\left(t^3, \tilde{w} \right) \quad \forall (\theta, w, M) \in \mathrm{NED}_k \times \mathrm{CG}_1 \times \mathrm{HHJ}_k, \end{split}\]

where \(\left( \cdot, \cdot \right)\) is the usual \(L^2\) inner product on the mesh \(\Omega\), \(\gamma(\theta, w) = \nabla w - \theta \in H(\mathrm{rot})\) is the shear-strain, \(\mu = E \kappa t/(2(1 + \nu))\) the shear modulus. \(k(M)\) are the bending strains \(k(\theta) = \mathrm{sym}(\nabla \theta)\) written in terms of the bending moments (stresses)

\[ k(M) = \frac{12}{E t^3} \left[ (1 + \nu) M - \nu \mathrm{tr}\left( M \right) I \right], \]

with \(\mathrm{tr}\) the trace operator and \(I\) the identity tensor.

The inner product \(\left< \cdot, \cdot \right>\) is defined by

\[ \left< M, \theta \right> = -\left( M, k(\theta) \right) + \int_{\partial K} M_{nn} \cdot [[ \theta ]]_n \; \mathrm{d}s, \]

where \(M_{nn} = \left(Mn \right) \cdot n\) is the normal-normal component of the bending moment, \(\partial K\) are the facets of the mesh, \([[ \theta ]]\) is the jump in the normal component of the rotations on the facets (reducing to simply \(\theta \cdot n\) on the exterior facets).

The above equations can be written relatively straightforwardly in UFL as:

dx = Measure("dx", mesh)
dS = Measure("dS", mesh)
ds = Measure("ds", mesh)


def k_theta(theta):
    """Bending strain tensor in terms of rotations"""
    return sym(grad(theta))


def k_M(M):
    """Bending strain tensor in terms of bending moments"""
    return (12.0 / (E * t**3)) * ((1.0 + nu) * M - nu * Identity(2) * tr(M))


def nn(M):
    """Normal-normal component of tensor"""
    n = FacetNormal(M.ufl_domain())
    M_n = M * n
    M_nn = ufl.dot(M_n, n)
    return M_nn


def inner_divdiv(M, theta):
    """Discrete div-div inner product"""
    n = FacetNormal(M.ufl_domain())
    M_nn = nn(M)
    result = (
        -inner(M, k_theta(theta)) * dx
        + inner(M_nn("+"), ufl.jump(theta, n)) * dS
        + inner(M_nn, ufl.dot(theta, n)) * ds
    )
    return result


def gamma(theta, w):
    """Shear strain"""
    return grad(w) - theta


a = (
    inner(k_M(M), M_t) * dx
    + inner_divdiv(M_t, theta)
    + inner_divdiv(M, theta_t)
    - ((E * kappa * t) / (2.0 * (1.0 + nu))) * inner(gamma(theta, w), gamma(theta_t, w_t)) * dx
)
L = -inner(1.0 * t**3, w_t) * dx

Imposition of boundary conditions requires some care. We reproduce the table from Pechstein and Schöberl specifying the different types of boundary condition.

| Essential | Natural | Non-homogeneous term | # noqa: E501 | ———————————— | ———————————— | ——————————————————————- | # noqa: E501 | \(w = \bar{w}\) | \(\mu(\partial_n w - \theta_n) = g_w\) | \(\int_{\Gamma} g_w \tilde{w} \; \mathrm{d}s\) | # noqa: E501 | \(\theta_\tau = \bar{\theta}_{\tau} \) | \(m_{n\tau} = g_{\theta_\tau}\) | \(\int_{\Gamma} g_{\theta_\tau} \cdot \tilde{\theta} \; \mathrm{d}s\) | # noqa: E501 | \(m_{nn} = \bar{m}_{nn}\) | \(\theta_n = g_{\theta_n}\) | \(\int_{\Gamma} g_{\theta_n} \tilde{m}_{nn} \; \mathrm{d}s\) | # noqa: E501

where \(\theta_{n} = \theta_n\) is the normal component of the rotation, \(\theta_{\tau} = \theta \cdot \tau \) is the tangential component of the rotation, \(m_{n\tau} = m \cdot n - \sigma_{nn} n\) is the normal-tangential component of \(n\), and \(g_{w}\) etc. are known natural boundary data and \(\bar{w}\) etc. are known essential boundary data.

In the case of an essential boundary condition the values are enforced directly in the finite element space using dolfinx.dirichletbc. In the case of a homogeneous natural boundary condition the corresponding essential boundary condition should be dropped. In the case of a non-homogeneous condition an extra term must be added to the weak formulation.

For a fully clamped plate we have on the entire boundary \(\bar{w} = 0\) (homogeneous essential), \(\bar{\theta_\tau} = 0\) (homogeneous essential), and \(g_{\theta_n} = 0\) (homogeneous natural).



def all_boundary(x):
    return np.full(x.shape[1], True, dtype=bool)


boundary_entities = dolfinx.mesh.locate_entities_boundary(mesh, mesh.topology.dim - 1, all_boundary)

bcs = []
# Transverse displacement
boundary_dofs = dolfinx.fem.locate_dofs_topological(
    U.sub(1), mesh.topology.dim - 1, boundary_entities
)
bcs.append(dirichletbc(np.array(0.0, dtype=np.float64), boundary_dofs, U.sub(1)))

# Fix tangential component of rotation
R = U.sub(0).collapse()[0]
boundary_dofs = dolfinx.fem.locate_dofs_topological(
    (U.sub(0), R), mesh.topology.dim - 1, boundary_entities
)

theta_bc = Function(R)
bcs.append(dirichletbc(theta_bc, boundary_dofs, U.sub(0)))

Finally we solve the problem and output the transverse displacement at the centre of the plate.

problem = LinearProblem(
    a,
    L,
    bcs=bcs,
    petsc_options={"ksp_type": "preonly", "pc_type": "lu", "pc_factor_mat_solver_type": "mumps"},
)
u_h = problem.solve()

bb_tree = dolfinx.geometry.bb_tree(mesh, 2)
point = np.array([[0.5, 0.5, 0.0]], dtype=np.float64)
cell_candidates = dolfinx.geometry.compute_collisions_points(bb_tree, point)
cells = dolfinx.geometry.compute_colliding_cells(mesh, cell_candidates, point)

theta, w, M = u_h.split()

if cells.array.shape[0] > 0:
    value = w.eval(point, cells.array[0])
    print(value[0])