Clamped semi-cylindrical Naghdi shell under point load

Authors: Tian Yang (FEniCSx-Shells), Matteo Brunetti (FEniCS-Shells)

This demo program solves the nonlinear Naghdi shell equations for a semi-cylindrical shell loaded by a point force.

This problem is a standard reference for testing shell finite element formulations, see [1]. The numerical locking issue is cured using enriched finite element including cubic bubble shape functions and Partial Selective Reduced Integration (PRSI) [2].

It is assumed the reader understands most of the basic functionality of the new FEniCSx Project.

This demo then illustrates how to:

  • Define and solve a nonlinear Naghdi shell problem with a curved stress-free configuration given as analytical expression in terms of two curvilinear coordinates.

  • Use the PSRI approach to simultaneously cure shear- and membrane-locking issues.

We begin by importing the necessary functionality from DOLFINx, UFL and PETSc.

import typing
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc

import matplotlib.pyplot as plt
import numpy as np

import dolfinx
import ufl
from basix.ufl import blocked_element, element, enriched_element, mixed_element
from dolfinx.fem import Expression, Function, dirichletbc, functionspace, locate_dofs_topological
from dolfinx.fem.bcs import DirichletBC
from dolfinx.fem.function import Function as _Function
from dolfinx.fem.petsc import NonlinearProblem, apply_lifting, assemble_vector, set_bc
from dolfinx.mesh import CellType, create_rectangle, locate_entities_boundary
from dolfinx.nls.petsc import NewtonSolver
from ufl import grad, inner, split

We consider a semi-cylindrical shell of radius \(r\) and axis length \(L\). The shell is made of a linear elastic isotropic homogeneous material with Young modulus \(E\) and Poisson ratio \(\nu\). The (uniform) shell thickness is denoted by \(t\). The Lamé moduli \(\lambda\), \(\mu\) are introduced to write later the 2D constitutive equation in plane-stress:

r = 1.016
L = 3.048
E, nu = 2.0685e7, 0.3
mu = E / (2.0 * (1.0 + nu))
lmbda = 2.0 * mu * nu / (1.0 - 2.0 * nu)
t = 0.03

The midplane of the initial (stress-free) configuration \(\vec{\phi_0}\) of the shell is given in the form of an analytical expression:

\[ \vec{\phi}_0(\xi_1, \xi_2) \subset \mathbb{R}³ \]

where \(\xi_1 \in [-\pi/2, \pi/2]\) and \(\xi_2 \in [0, L]\) are the curvilinear coordinates. In this case, they represent the angular and axial coordinates, respectively.

We generate a mesh in the \((\xi_1, \xi_2)\) space with quadrilateral cells

mesh = create_rectangle(
    MPI.COMM_WORLD, np.array([[-np.pi / 2, 0], [np.pi / 2, L]]), [20, 20], CellType.triangle
)
tdim = mesh.topology.dim  # = 2

We provide the analytical expression of the initial shape as a ufl expression

x = ufl.SpatialCoordinate(mesh)
phi0_ufl = ufl.as_vector([r * ufl.sin(x[0]), x[1], r * ufl.cos(x[0])])

Given the analytical expression of midplane, we define the unit normal as below:

\[ \vec{n} = \frac{\partial_1 \phi_0 \times \partial_2 \phi_0}{\| \partial_1 \phi_0 \times \partial_2 \phi_0 \|} \]
def unit_normal(phi):
    n = ufl.cross(phi.dx(0), phi.dx(1))
    return n / ufl.sqrt(inner(n, n))


n0_ufl = unit_normal(phi0_ufl)

We define a local orthonormal frame \(\{\vec{t}_{01}, \vec{t}_{02}, \vec{n}\}\) of the initial configuration \(\phi_0\) by rotating the global Cartesian basis \(\vec{e}_i\) with a rotation matrix \(\mathbf{R}_0\):

\[ \vec{t}_{0i} = \mathbf{R}_0 \vec{e}_i , \quad \vec{n} = \vec{t}_{03}, \]

A convienient choice of \(\vec{t}_{01}\) and \(\vec{t}_{02}\) (when \(\vec{n} \nparallel \vec{e}_2 \)) could be:

\[\begin{split} \vec{t}_{01} = \frac{\vec{e}_2 \times \vec{n}}{\| \vec{e}_2 \times \vec{n}\|} \\ \vec{t}_{02} = \vec{n} \times \vec{t}_{01} \end{split}\]

The corresponding rotation matrix \(\mathbf{R}_0\):

\[ \mathbf{R}_0 = [\vec{t}_{01}; \vec{t}_{02}; \vec{n}] \]
def tangent_1(n):
    e2 = ufl.as_vector([0, 1, 0])
    t1 = ufl.cross(e2, n)
    t1 = t1 / ufl.sqrt(inner(t1, t1))
    return t1


def tangent_2(n, t1):
    t2 = ufl.cross(n, t1)
    t2 = t2 / ufl.sqrt(inner(t2, t2))
    return t2


# The analytical expression of t1 and t2
t1_ufl = tangent_1(n0_ufl)
t2_ufl = tangent_2(n0_ufl, t1_ufl)


# The analytical expression of R0
def rotation_matrix(t1, t2, n):
    R = ufl.as_matrix([[t1[0], t2[0], n[0]], [t1[1], t2[1], n[1]], [t1[2], t2[2], n[2]]])
    return R


R0_ufl = rotation_matrix(t1_ufl, t2_ufl, n0_ufl)

The kinematics of the Nadghi shell model is defined by the following vector fields:

  • \(\vec{\phi}\): the position of the midplane in the deformed configuration, or equivalently, the displacement \(\vec{u} = \vec{\phi} - \vec{\phi}_0\)

  • \(\vec{d}\): the director, a unit vector giving the orientation of fiber at the midplane. (not necessarily normal to the midsplane because of shears)

According to [3], the director \(\vec{d}\) in the deformed configuration can be parameterized with two successive rotation angles \(\theta_1, \theta_2\)

\[ \vec{t}_i = \mathbf{R} \vec{e}_i, \quad \mathbf{R} = \text{exp}[\theta_1 \hat{\mathbf{t}}_1] \text{exp}[\theta_2 \hat{\mathbf{t}}_{02}] \mathbf{R}_0 \]

The rotation matrix \(\mathbf{R}\) represents three successive rotations:

  • First one: the initial rotation matrix \(\mathbf{R}_0\)

  • Second one :\(\text{exp}[\theta_2 \hat{\mathbf{t}}_{02}]\) rotates a vector about the axis \(\vec{t}_{02}\) of \(\theta_2\) angle;

  • Third one : \(\text{exp}[\theta_1 \hat{\mathbf{t}}_1]\) rotates a vector about the axis \(\vec{t}_{1}\) of \(\theta_1\) angle, and \(\vec{t}_1 = \text{exp} [\theta_2\hat{\mathbf{t}}_{02}] \vec{t}_{01}\)

The rotation matrix \(\mathbf{R}\) on the other hand it is equivalent to rotate around the fixed axis \(\vec{e}_1\) and \(\vec{e}_2\) (Proof see [3]):

\[ \mathbf{R} = \mathbf{R}_0 \text{exp}[\theta_2 \hat{\mathbf{e}}_{2}] \text{exp}[\theta_1 \hat{\mathbf{e}}_1] \]

Therefore, the director \(\vec{d}\) is updated with \((\theta_1, \theta_2)\) by:

\[ \vec{d} =\mathbf{R} \vec{e}_3 = \mathbf{R}_0 \vec{\Lambda}_3, \quad \vec{\Lambda}_3 = [\sin(\theta_2)\cos(\theta_1), -\sin(\theta_1), \cos(\theta_2)\cos(\theta_1)]^\text{T} \]

Note: the above formular becomes singular when \(\theta_1 = \pm \pi/2, ...\), (See Chapter 4.2.1 in [3] for details)

def director(R0, theta):
    """Updates the director with two successive elementary rotations"""
    Lm3 = ufl.as_vector(
        [
            ufl.sin(theta[1]) * ufl.cos(theta[0]),
            -ufl.sin(theta[0]),
            ufl.cos(theta[1]) * ufl.cos(theta[0]),
        ]
    )
    d = ufl.dot(R0, Lm3)
    return d

In our 5-parameter Naghdi shell model the configuration of the shell is assigned by:

  • the 3-component vector field \(\vec{u}\) representing the displacement with respect to the initial configuration \(\vec{\phi}_0\)

  • the 2-component vector field \(\vec{\theta}\) representing the angle variation of the director \(\vec{d}\) with respect to initial unit normal \(\vec{n}\)

Following [1], we use a \([P_2 + B_3]^3\) element for \(\vec{u}\) and a \([P_2]^2\) element for \(\vec{\theta}\) and collect them in the state vector \(\vec{q} = [\vec{u}, \vec{\theta}]\):

cell = mesh.basix_cell()
P2 = element("Lagrange", cell, degree=2)
B3 = element("Bubble", cell, degree=3)
P2B3 = enriched_element([P2, B3])

naghdi_shell_element = mixed_element(
    [blocked_element(P2B3, shape=(3,)), blocked_element(P2, shape=(2,))]
)
naghdi_shell_FS = functionspace(mesh, naghdi_shell_element)

Then, we define Function, TrialFunction and TestFunction objects to express the variational forms and we split the mixed function into two subfunctions for displacement and rotation.

q_func = Function(naghdi_shell_FS)  # current configuration
q_trial = ufl.TrialFunction(naghdi_shell_FS)
q_test = ufl.TestFunction(naghdi_shell_FS)

u_func, theta_func = split(q_func)  # current displacement and rotation

We calculate the deformation gradient and the first and second fundamental forms:

  • Deformation gradient \(\mathbf{F}\)

\[ \mathbf{F} = \nabla \vec{\phi} \quad (F_{ij} = \frac{\partial \phi_i}{\partial \xi_j}); \quad \vec{\phi} = \vec{\phi}_0 + \vec{u} \quad i = 1,2,3; j = 1,2 \]
  • Metric tensor \(\mathbf{a} \in \mathbb{S}^2_+\) and curvature tensor \(\mathbf{b} \in \mathbb{S}^2\) (First and second fundamental form)

\[\begin{split} \begin{aligned} \mathbf{a} &= {\nabla \vec{\phi}} ^{T} \nabla \vec{\phi} \\ \mathbf{b} &= -\frac{1}{2}({\nabla \vec{\phi}} ^{T} \nabla \vec{d} + {\nabla \vec{d}} ^{T} \nabla \vec{\phi}) \end{aligned} \end{split}\]

In the initial configuration, \(\vec{d} = \vec{n}\), \(\vec{\phi} = \vec{\phi}_0\), the conresponding initial tensors are \(\mathbf{a}_0\), \(\mathbf{b}_0\)

# Current deformation gradient
F = grad(u_func) + grad(phi0_ufl)

# current director
d = director(R0_ufl, theta_func)

# initial metric and curvature tensor a0 and b0
a0_ufl = grad(phi0_ufl).T * grad(phi0_ufl)
b0_ufl = -0.5 * (grad(phi0_ufl).T * grad(n0_ufl) + grad(n0_ufl).T * grad(phi0_ufl))

We define strain measures of the Naghdi shell model:

  • Membrane strain tensor \(\boldsymbol{\varepsilon}(\vec{u})\)

\[ \boldsymbol{\varepsilon} (\vec{u})= \frac{1}{2} \left ( \mathbf{a}(\vec{u}) - \mathbf{a}_0 \right) \]
  • Bending strain tensor \(\boldsymbol{\kappa}(\vec{u}, \vec{\theta})\)

\[ \boldsymbol{\kappa}(\vec{u}, \vec{\theta}) = \mathbf{b}(\vec{u}, \vec{\theta}) - \mathbf{b}_0 \]
  • transverse shear strain vector \(\vec{\gamma}(\vec{u}, \vec{\theta})\)

\[\begin{split} \begin{aligned} \vec{\gamma}(\vec{u}, \vec{\theta}) & = {\nabla \vec{\phi}(\vec{u})}^T \vec{d}(\vec{\theta}) - {\nabla\vec{\phi}_0}^T \vec{n} \\ & = {\nabla \vec{\phi}(\vec{u})}^T \vec{d}(\vec{\theta}) \quad \text{if zero initial shears} \end{aligned} \end{split}\]
def epsilon(F):
    """Membrane strain"""
    return 0.5 * (F.T * F - a0_ufl)


def kappa(F, d):
    """Bending strain"""
    return -0.5 * (F.T * grad(d) + grad(d).T * F) - b0_ufl


def gamma(F, d):
    """Transverse shear strain"""
    return F.T * d

In curvilinear coordinates, the stiffness modulus of linear isotropic material is defined as:

  • Membrane and bending stiffness modulus \(A^{\alpha\beta\sigma\tau}\), \(D^{\alpha\beta\sigma\tau}\) (contravariant components)

\[ \frac{A^{\alpha\beta\sigma\tau}}t=12\frac{D^{\alpha\beta\sigma\tau}}{t^3}= \frac{2\lambda\mu}{\lambda+2\mu} a_0^{\alpha\beta}a_0^{\sigma\tau}+\mu(a_0^{\alpha\sigma}a_0^{\beta\tau}+a_0^{\alpha\tau} a_0^{\beta\sigma}) \]
  • Shear stiffness modulus \(S^{\alpha\beta}\) (contravariant components)

\[ \frac{S^{\alpha\beta}}t = \alpha_s \mu a_0^{\alpha\beta} , \quad \alpha_s = \frac{5}{6}: \text{shear factor} \]

where \(a_0^{\alpha\beta}\) is the contravariant components of the initial metric tensor \(\mathbf{a}_0\)

a0_contra_ufl = ufl.inv(a0_ufl)
j0_ufl = ufl.det(a0_ufl)

i, j, l, m = ufl.indices(4)  # noqa: E741
A_contra_ufl = ufl.as_tensor(
    (
        ((2.0 * lmbda * mu) / (lmbda + 2.0 * mu)) * a0_contra_ufl[i, j] * a0_contra_ufl[l, m]
        + 1.0
        * mu
        * (a0_contra_ufl[i, l] * a0_contra_ufl[j, m] + a0_contra_ufl[i, m] * a0_contra_ufl[j, l])
    ),
    [i, j, l, m],
)

We define the resultant stress measures:

  • Membrane stress tensor \(\mathbf{N}\)

\[ \mathbf{N} = \mathbf{A} : \boldsymbol{\varepsilon} \]
  • Bending stress tensor \(\mathbf{M}\)

\[ \mathbf{M} = \mathbf{D} : \boldsymbol{\kappa} \]
  • Shear stress vector \(\vec{T}\)

\[ \vec{T} = \mathbf{S} \cdot \vec{\gamma} \]
N = ufl.as_tensor(t * A_contra_ufl[i, j, l, m] * epsilon(F)[l, m], [i, j])
M = ufl.as_tensor((t**3 / 12.0) * A_contra_ufl[i, j, l, m] * kappa(F, d)[l, m], [i, j])
T = ufl.as_tensor((t * mu * 5.0 / 6.0) * a0_contra_ufl[i, j] * gamma(F, d)[j], [i])

We define elastic strain energy density \(\psi_{m}\), \(\psi_{b}\), \(\psi_{s}\) for membrane, bending and shear, respectively.

\[ \psi_m = \frac{1}{2} \mathbf{N} : \boldsymbol{\varepsilon}; \quad \psi_b = \frac{1}{2} \mathbf{M} : \boldsymbol{\kappa}; \quad \psi_s = \frac{1}{2} \vec{T} \cdot \vec{\gamma} \]

They are per unit surface in the initial configuration:

psi_m = 0.5 * inner(N, epsilon(F))
psi_b = 0.5 * inner(M, kappa(F, d))
psi_s = 0.5 * inner(T, gamma(F, d))

Shear and membrane locking is treated using the partial reduced selective integration proposed in Arnold and Brezzi [2].

We introduce a parameter \(\alpha \in \mathbb{R}\) that splits the membrane and shear energy in the energy functional into a weighted sum of two parts:

\[\begin{split} \begin{aligned}\Pi_{N}(u,\theta)&=\Pi^b(u_h,\theta_h)+\alpha\Pi^m(u_h)+(1-\alpha)\Pi^m(u_h)\\&+ \alpha\Pi^s(u_h,\theta_h) +(1-\alpha)\Pi^s(u_h,\theta_h)-W_{\mathrm{ext}},\end{aligned} \end{split}\]

We apply reduced integration to the parts weighted by the factor \((1-\alpha)\)

More details:

  • Optimal choice \(\alpha = \frac{t^2}{h^2}\), \(h\) is the diameter of the cell

  • Full integration : Gauss quadrature of degree 4 (6 integral points for triangle)

  • Reduced integration : Gauss quadrature of degree 2 (3 integral points for triangle).

  • While [1] suggests a 1-point reduced integration, we observed that this leads to spurious modes in the present case.

# Full integration of order 4
dx_f = ufl.Measure("dx", domain=mesh, metadata={"quadrature_degree": 4})

# Reduced integration of order 2
dx_r = ufl.Measure("dx", domain=mesh, metadata={"quadrature_degree": 2})

# Calculate the factor alpha as a function of the mesh size h
h = ufl.CellDiameter(mesh)
alpha_FS = functionspace(mesh, element("DG", cell, 0))
alpha_expr = Expression(t**2 / h**2, alpha_FS.element.interpolation_points())
alpha = Function(alpha_FS)
alpha.interpolate(alpha_expr)

# Full integration part of the total elastic energy
Pi_PSRI = psi_b * ufl.sqrt(j0_ufl) * dx_f
Pi_PSRI += alpha * psi_m * ufl.sqrt(j0_ufl) * dx_f
Pi_PSRI += alpha * psi_s * ufl.sqrt(j0_ufl) * dx_f

# Reduced integration part of the total elastic energy
Pi_PSRI += (1.0 - alpha) * psi_m * ufl.sqrt(j0_ufl) * dx_r
Pi_PSRI += (1.0 - alpha) * psi_s * ufl.sqrt(j0_ufl) * dx_r

# External work part (zero in this case)
W_ext = 0.0
Pi_PSRI -= W_ext

The residual and jacobian are the first and second order derivatives of the total potential energy, respectively

F = ufl.derivative(Pi_PSRI, q_func, q_test)
J = ufl.derivative(F, q_func, q_trial)

Next, we prescribe the dirichlet boundary conditions:

  • fully clamped boundary conditions on the top boundary (\(\xi_2 = 0\)):

  • \(u_{1,2,3} = \theta_{1,2} = 0\)

def clamped_boundary(x):
    return np.isclose(x[1], 0.0)


fdim = tdim - 1
clamped_facets = locate_entities_boundary(mesh, fdim, clamped_boundary)

u_FS, _ = naghdi_shell_FS.sub(0).collapse()
theta_FS, _ = naghdi_shell_FS.sub(1).collapse()

# u1, u2, u3 = 0 on the clamped boundary
u_clamped = Function(u_FS)
clamped_dofs_u = locate_dofs_topological((naghdi_shell_FS.sub(0), u_FS), fdim, clamped_facets)
bc_clamped_u = dirichletbc(u_clamped, clamped_dofs_u, naghdi_shell_FS.sub(0))

# theta1, theta2 = 0 on the clamped boundary
theta_clamped = Function(theta_FS)
clamped_dofs_theta = locate_dofs_topological(
    (naghdi_shell_FS.sub(1), theta_FS), fdim, clamped_facets
)
bc_clamped_theta = dirichletbc(theta_clamped, clamped_dofs_theta, naghdi_shell_FS.sub(1))
  • symmetry boundary conditions on the left and right side (\(\xi_1 = \pm \pi/2\)):

  • \(u_3 = \theta_2 = 0\)

def symm_boundary(x):
    return np.isclose(abs(x[0]), np.pi / 2)


symm_facets = locate_entities_boundary(mesh, fdim, symm_boundary)

symm_dofs_u = locate_dofs_topological(
    (naghdi_shell_FS.sub(0).sub(2), u_FS.sub(2)), fdim, symm_facets
)
bc_symm_u = dirichletbc(u_clamped, symm_dofs_u, naghdi_shell_FS.sub(0).sub(2))

symm_dofs_theta = locate_dofs_topological(
    (naghdi_shell_FS.sub(1).sub(1), theta_FS.sub(1)), fdim, symm_facets
)
bc_symm_theta = dirichletbc(theta_clamped, symm_dofs_theta, naghdi_shell_FS.sub(1).sub(1))

bcs = [bc_clamped_u, bc_clamped_theta, bc_symm_u, bc_symm_theta]

The loading is exerted by a point force along the \(z\) direction applied at the midpoint of the bottom boundary. Since PointSource function is not available by far in new FEniCSx, we achieve the same functionality according to the method detailed in [4].

def compute_cell_contributions(V, points):
    """Returns the cell containing points and the values of the basis functions
    at that point"""
    # Determine what process owns a point and what cells it lies within
    mesh = V.mesh
    point_ownership_data = dolfinx.cpp.geometry.determine_point_ownership(
        mesh._cpp_object, points, 1e-6
    )

    owning_points = np.asarray(point_ownership_data.dest_points).reshape(-1, 3)
    cells = point_ownership_data.dest_cells

    # Pull owning points back to reference cell
    mesh_nodes = mesh.geometry.x
    cmap = mesh.geometry.cmap
    ref_x = np.zeros((len(cells), mesh.geometry.dim), dtype=mesh.geometry.x.dtype)
    for i, (point, cell) in enumerate(zip(owning_points, cells)):
        geom_dofs = mesh.geometry.dofmap[cell]
        ref_x[i] = cmap.pull_back(point.reshape(-1, 3), mesh_nodes[geom_dofs])

    # Create expression evaluating a trial function (i.e. just the basis function)
    u = ufl.TrialFunction(V.sub(0).sub(2))
    num_dofs = V.sub(0).sub(2).dofmap.dof_layout.num_dofs * V.sub(0).sub(2).dofmap.bs
    if len(cells) > 0:
        # NOTE: Expression lives on only this communicator rank
        expr = dolfinx.fem.Expression(u, ref_x, comm=MPI.COMM_SELF)
        values = expr.eval(mesh, np.asarray(cells, dtype=np.int32))

        # Strip out basis function values per cell
        basis_values = values[: num_dofs : num_dofs * len(cells)]
    else:
        basis_values = np.zeros((0, num_dofs), dtype=dolfinx.default_scalar_type)
    return cells, basis_values
# Point source
if mesh.comm.rank == 0:
    points = np.array([[0.0, L, 0.0]], dtype=mesh.geometry.x.dtype)
else:
    points = np.zeros((0, 3), dtype=mesh.geometry.x.dtype)

cells, basis_values = compute_cell_contributions(naghdi_shell_FS, points)

We define a custom NonlinearProblem which is able to include the point force.

class NonlinearProblemPointSource(NonlinearProblem):
    def __init__(
        self,
        F: ufl.form.Form,
        u: _Function,
        bcs: typing.List[DirichletBC] = [],  # noqa: UP006
        J: ufl.form.Form = None,
        cells=[],
        basis_values=[],
        PS: float = 0.0,
    ):
        super().__init__(F, u, bcs, J)
        self.PS = PS
        self.cells = cells
        self.basis_values = basis_values
        self.function_space = u.function_space

    def F(self, x: PETSc.Vec, b: PETSc.Vec) -> None:
        with b.localForm() as b_local:
            b_local.set(0.0)
        assemble_vector(b, self._L)

        # Add point source
        if len(self.cells) > 0:
            for cell, basis_value in zip(self.cells, self.basis_values):
                dofs = self.function_space.sub(0).sub(2).dofmap.cell_dofs(cell)
                with b.localForm() as b_local:
                    b_local.setValuesLocal(
                        dofs, basis_value * self.PS, addv=PETSc.InsertMode.ADD_VALUES
                    )

        apply_lifting(b, [self._a], bcs=[self.bcs], x0=[x], alpha=-1.0)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, self.bcs, x, -1.0)

We use the standard Newton iteration.

problem = NonlinearProblemPointSource(F, q_func, bcs, J, cells, basis_values)

solver = NewtonSolver(mesh.comm, problem)

# Set Newton solver options
solver.rtol = 1e-6
solver.atol = 1e-6
solver.max_it = 30
solver.convergence_criterion = "incremental"
solver.report = True

# Modify the linear solver in each Newton iteration
ksp = solver.krylov_solver
opts = PETSc.Options()
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "preonly"
opts[f"{option_prefix}pc_factor_mat_solver_type"] = "mumps"
ksp.setFromOptions()

Finally, we can solve the quasi-static problem, incrementally increasing the loading from \(0\)N to \(2000\)N

PS_diff = 50.0
n_step = 40

# Store the displacement at the point load
if mesh.comm.rank == 0:
    u3_list = np.zeros(n_step + 1)
    PS_list = np.arange(0, PS_diff * (n_step + 1), PS_diff)

q_func.x.array[:] = 0.0

bb_point = np.array([[0.0, L, 0.0]], dtype=np.float64)

for i in range(1, n_step + 1):
    problem.PS = PS_diff * i
    n, converged = solver.solve(q_func)
    assert converged
    q_func.x.scatter_forward()
    if mesh.comm.rank == 0:
        print(f"Load step {i:d}, Number of iterations: {n:d}, Load: {problem.PS:.2f}", flush=True)
    # Calculate u3 at the point load
    u3_bb = None
    u3_func = q_func.sub(0).sub(2).collapse()
    if len(cells) > 0:
        u3_bb = u3_func.eval(bb_point, cells[0])[0]
    u3_bb = mesh.comm.gather(u3_bb, root=0)
    if mesh.comm.rank == 0:
        for u3 in u3_bb:
            if u3 is not None:
                u3_list[i] = u3
                break

We write the outputs of \(\vec{u}\), \(\vec{\theta}\), and \(\vec{\phi}\) in the second order Lagrange space.

# Interpolate phi_ufl into CG2 Space
u_P2B3 = q_func.sub(0).collapse()
theta_P2 = q_func.sub(1).collapse()

# Interpolate phi in the [P2]³ Space
phi_FS = functionspace(mesh, blocked_element(P2, shape=(3,)))
phi_expr = Expression(phi0_ufl + u_P2B3, phi_FS.element.interpolation_points())
phi_func = Function(phi_FS)
phi_func.interpolate(phi_expr)

# Interpolate u in the [P2]³ Space
u_P2 = Function(phi_FS)
u_P2.interpolate(u_P2B3)

results_folder = Path("results/nonlinear_naghdi/semi_cylinder")
results_folder.mkdir(exist_ok=True, parents=True)

with dolfinx.io.VTXWriter(mesh.comm, results_folder / "u_naghdi.bp", [u_P2]) as vtx:
    vtx.write(0)

with dolfinx.io.VTXWriter(mesh.comm, results_folder / "theta_naghdi.bp", [theta_P2]) as vtx:
    vtx.write(0)

with dolfinx.io.VTXWriter(mesh.comm, results_folder / "phi_naghdi.bp", [phi_func]) as vtx:
    vtx.write(0)

The results for the transverse displacement at the point of application of the force are validated against a standard reference from the literature, obtained using Abaqus S4R element and a structured mesh of 40 times 40 elements, see [1]:

if mesh.comm.rank == 0:
    fig = plt.figure()
    reference_u3 = 1.0e-2 * np.array(
        [
            0.0,
            5.421,
            16.1,
            22.195,
            27.657,
            32.7,
            37.582,
            42.633,
            48.537,
            56.355,
            66.410,
            79.810,
            94.669,
            113.704,
            124.751,
            132.653,
            138.920,
            144.185,
            148.770,
            152.863,
            156.584,
            160.015,
            163.211,
            166.200,
            168.973,
            171.505,
        ]
    )
    reference_P = 2000.0 * np.array(
        [
            0.0,
            0.05,
            0.1,
            0.125,
            0.15,
            0.175,
            0.2,
            0.225,
            0.25,
            0.275,
            0.3,
            0.325,
            0.35,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6,
            0.65,
            0.7,
            0.75,
            0.8,
            0.85,
            0.9,
            0.95,
            1.0,
        ]
    )
    plt.plot(-u3_list, PS_list, label="FEniCSx-Shells 20 x 20")
    plt.plot(reference_u3, reference_P, "or", label="Sze (Abaqus S4R)")
    plt.xlabel("Displacement (mm)")
    plt.ylabel("Load (N)")
    plt.legend()
    plt.grid()
    plt.tight_layout()
    plt.savefig(results_folder / "comparisons.pdf")

References:

[1] K. Sze, X. Liu, and S. Lo. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design, 40(11):1551 - 1569, 2004.

[2] D. Arnold and F.Brezzi, Mathematics of Computation, 66(217): 1-14, 1997. https://www.ima.umn.edu/~arnold//papers/shellelt.pdf

[3] P. Betsch, A. Menzel, and E. Stein. On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells. Computer Methods in Applied Mechanics and Engineering, 155(3):273 - 305, 1998.

[4] https://fenicsproject.discourse.group/t/point-sources-redux/13496/4